Lecture 13 : Strategy for Integration

We have the following standard table of integrals:

TABLE OF INTEGRATION FORMULAS Constants of integration have been omitted.
I. $\int x^{n} d x=\frac{x^{n+1}}{n+1} \quad(n \neq-1)$
2. $\int \frac{1}{x} d x=\ln |x|$
3. $\int e^{x} d x=e^{x}$
4. $\int a^{x} d x=\frac{a^{x}}{\ln a}$
5. $\int \sin x d x=-\cos x$
6. $\int \cos x d x=\sin x$
7. $\int \sec ^{2} x d x=\tan x$
8. $\int \csc ^{2} x d x=-\cot x$
9. $\int \sec x \tan x d x=\sec x$
10. $\int \csc x \cot x d x=-\csc x$
II. $\int \sec x d x=\ln |\sec x+\tan x|$
12. $\int \csc x d x=\ln |\csc x-\cot x|$
13. $\int \tan x d x=\ln |\sec x|$
14. $\int \cot x d x=\ln |\sin x|$
15. $\int \sinh x d x=\cosh x$
16. $\int \cosh x d x=\sinh x$
17. $\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)$
18. $\int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1}\left(\frac{x}{a}\right), \quad a>0$
*19. $\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \ln \left|\frac{x-a}{x+a}\right| \quad$ *20. $\int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\ln \left|x+\sqrt{x^{2} \pm a^{2}}\right|$

Faced with an integral, we must use a problem solving approach to finding the right method or combination of methods to apply.

1. It may be possible to Simplify the integral e.g.

$$
\int \cot x d x=\int \frac{\cos x}{\sin x} d x
$$

2. It may be possible to simplify or solve the integral with a substitution e.g.

$$
\int \frac{1}{x(\ln x)^{10}} d x
$$

3. if it is of the form

$$
\int \sin ^{n} x \cos ^{m} x d x, \quad \int \tan ^{n} x \sec ^{m} x d x \quad \int \sin (n x) \cos (m x) d x
$$

we can deal with it using the standard methods for trigonometric functions we have studied.
4. If we are trying to integrate a rational function, we apply the techniques of the previous section.
5. We should check if integration by parts will work.
6. If the integral contains an expression of the form $\sqrt{ \pm x^{2} \pm a^{2}}$ we can use a trigonometric substitution. If the integral contains an expression of the form $\sqrt[n]{a x+b}$, the function may become a rational function when we use $u=\sqrt[n]{a x+b}$, a rationalizing substitution. This may also work for integrals with expressions of the form $\sqrt[n]{g(x)}$ with $u=\sqrt[n]{g(x)}$
7. You may be able to manipulate the integrand to change its form. e.g.

$$
\int \sec x d x
$$

8. The integral may resemble something you have already seen and you may see that a change of format or substitution will convert the integral to some basic integral that you have already worked through e.g.

$$
\int \sin x \cos x e^{\sin x} d x
$$

9. Your solution may involve several steps.

Review

Outline how you would approach the following integrals:

1. $\int \ln x d x$
2. $\int \tan x d x$
3. $\int \sin ^{3} x \cos x d x$
4. $\int \frac{1}{\sqrt{25-x^{2}}} d x$
5. $\int \sec x d x$
6. $\int e^{\sqrt{x}} d x$
7. $\int \sin (7 x) \cos (4 x) d x$
8. $\int \cos ^{2} x d x$
9. $\int \frac{1}{x^{2}-9} d x$

More challenging integrals

The following integrals may require multiple steps:
Outline how you might approach the following integrals
$\int \frac{x^{2}}{9+x^{6}} d x$
$\int \frac{1}{x^{2}+27 x+26} d x$
$\int \frac{x \arctan x}{\left(1+x^{2}\right)^{2}} d x$
$\int \frac{\ln x}{x \sqrt{1+(\ln x)^{2}}} d x$
$\int \frac{1+\sin x}{1-\sin x} d x$
$\int \frac{\ln x}{\sqrt{x}} d x$

Note There are many integrals for which our methods will not work, for example:

$$
\int e^{x^{2}} d x, \quad \int \frac{e^{x}}{x} d x \quad \int \frac{1}{\ln x} d x \quad \int \frac{\sin x}{x} d x
$$

see p 524 of your book for more examples. Feel free to try :)
We can estimate definite integrals of these functions using Riemann sums or the methods of the next section.

